Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
ACS Appl Mater Interfaces ; 14(8): 10844-10855, 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1692677

ABSTRACT

The widespread and long-lasting effect of the COVID-19 pandemic has called attention to the significance of technological advances in the rapid diagnosis of SARS-CoV-2 virus. This study reports the use of a highly stable buffer-based zinc oxide/reduced graphene oxide (bbZnO/rGO) nanocomposite coated on carbon screen-printed electrodes for electrochemical immuno-biosensing of SARS-CoV-2 nuelocapsid (N-) protein antigens in spiked and clinical samples. The incorporation of a salt-based (ionic) matrix for uniform dispersion of the nanomixture eliminates multistep nanomaterial synthesis on the surface of the electrode and enables a stable single-step sensor nanocoating. The immuno-biosensor provides a limit of detection of 21 fg/mL over a linear range of 1-10 000 pg/mL and exhibits a sensitivity of 32.07 ohms·mL/pg·mm2 for detection of N-protein in spiked samples. The N-protein biosensor is successful in discriminating positive and negative clinical samples within 15 min, demonstrating its proof of concept used as a COVID-19 rapid antigen test.


Subject(s)
Antigens, Viral/analysis , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Graphite/chemistry , Nanocomposites/chemistry , Zinc Oxide/chemistry , Antibodies, Immobilized/immunology , Antigens, Viral/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Humans , Immunoassay/instrumentation , Immunoassay/methods , Limit of Detection , Phosphoproteins/analysis , Phosphoproteins/immunology , Proof of Concept Study , SARS-CoV-2/chemistry
2.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: covidwho-1686809

ABSTRACT

Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Molecular Imprinting/methods , Molecularly Imprinted Polymers/chemistry , Phenylalanine/analysis , Tryptophan/analysis , Tyrosine/analysis , Amino Acids/analysis , Polymers/chemistry
3.
Biosensors (Basel) ; 12(1)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1640558

ABSTRACT

Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Biomimetics , Biosensing Techniques/instrumentation , Equipment Design , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Polymers/chemistry , Proteins
4.
Adv Mater ; 34(8): e2107892, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1634021

ABSTRACT

Surface chemistry critically affects the diagnostic performance of biosensors. An ideal sensor surface should be resistant to nonspecific protein adsorption, yet be conducive to analytical responses. Here a new polymeric material, zwitterionic polypyrrole (ZiPPy), is reported to produce optimal surface condition for biosensing electrodes. ZiPPy combines two unique advantages: the zwitterionic function that efficiently hydrates electrode surface, hindering nonspecific binding of hydrophobic proteins; and the pyrrole backbone, which enables rapid (<7 min), controlled deposition of ZiPPy through electropolymerization. ZiPPy-coated electrodes show lower electrochemical impedance and less nonspecific protein adsorption (low fouling), outperforming bare and polypyrrole-coated electrodes. Moreover, affinity ligands for target biomarkers can be immobilized together with ZiPPy in a single-step electropolymerization. ZiPPy-coated electrodes are developed with specificity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prepared sensor detects SARS-CoV-2 antibodies in human saliva down to 50 ng mL-1 , without the need for sample purification or secondary labeling.


Subject(s)
Antibodies, Viral/analysis , Biosensing Techniques/methods , COVID-19/diagnosis , Polymers/chemistry , Pyrroles/chemistry , Biosensing Techniques/instrumentation , COVID-19/virology , Electrochemical Techniques , Electrodes , Electroplating , Gold/chemistry , Humans , Limit of Detection , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Saliva/metabolism , Surface Properties
5.
Nat Commun ; 13(1): 72, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616984

ABSTRACT

The use of facemasks by the general population is recommended worldwide to prevent the spread of SARS-CoV-2. Despite the evidence in favour of facemasks to reduce community transmission, there is also agreement on the potential adverse effects of their prolonged usage, mainly caused by CO2 rebreathing. Herein we report the development of a sensing platform for gaseous CO2 real-time determination inside FFP2 facemasks. The system consists of an opto-chemical sensor combined with a flexible, battery-less, near-field-enabled tag with resolution and limit of detection of 103 and 140 ppm respectively, and sensor lifetime of 8 h, which is comparable with recommended FFP2 facemask usage times. We include a custom smartphone application for wireless powering, data processing, alert management, results displaying and sharing. Through performance tests during daily activity and exercise monitoring, we demonstrate its utility for non-invasive, wearable health assessment and its potential applicability for preclinical research and diagnostics.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19/prevention & control , Carbon Dioxide/analysis , Masks , Personal Protective Equipment , Wearable Electronic Devices , Biosensing Techniques/methods , COVID-19/transmission , COVID-19/virology , Equipment Design , Humans , Reproducibility of Results , SARS-CoV-2/physiology
6.
ACS Appl Bio Mater ; 4(12): 8110-8128, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-1597218

ABSTRACT

The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials focusing on MPC polymers and highlight their attractive potentials for applications in micro/nanofabricated fluidic devices, biosensors, lab-on-a-chip, drug delivery systems (DDSs), COVID-19 potential usages for early diagnosis and even treatment, and artificial extracellular matrix scaffolds for cellular engineering.


Subject(s)
Biocompatible Materials/chemistry , Drug Carriers/chemistry , Lab-On-A-Chip Devices , Nanostructures/chemistry , Phospholipids/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Humans , Microscopy, Confocal , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
7.
J Am Chem Soc ; 144(4): 1498-1502, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1586041

ABSTRACT

Several applications in health diagnostics, food, safety, and environmental monitoring require rapid, simple, selective, and quantitatively accurate viral load monitoring. Here, we introduce the first label-free biosensing method that rapidly detects and quantifies intact virus in human saliva with single-virion resolution. Using pseudotype SARS-CoV-2 as a representative target, we immobilize aptamers with the ability to differentiate active from inactive virions on a photonic crystal, where the virions are captured through affinity with the spike protein displayed on the outer surface. Once captured, the intrinsic scattering of the virions is amplified and detected through interferometric imaging. Our approach analyzes the motion trajectory of each captured virion, enabling highly selective recognition against nontarget virions, while providing a limit of detection of 1 × 103 copies/mL at room temperature. The approach offers an alternative to enzymatic amplification assays for point-of-collection diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Immobilized Nucleic Acids/chemistry , SARS-CoV-2/isolation & purification , Biosensing Techniques/instrumentation , Humans , Limit of Detection , Microscopy/methods , Optics and Photonics/instrumentation , Optics and Photonics/methods , SARS-CoV-2/chemistry , Saliva/virology , Spike Glycoprotein, Coronavirus/chemistry
8.
Anal Bioanal Chem ; 414(3): 1313-1322, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1506326

ABSTRACT

Among the deadliest pandemics in history, coronavirus disease 2019 (COVID-19) has wreaked havoc on human lives, economies and public health systems worldwide. To temper its effects, diagnostic methods that are simple, rapid, inexpensive, accurate, selective and sensitive continue to be necessary. In our study, we developed an electrochemical biosensing platform based on gold clusters, mercaptoethanol, the spike protein of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antigen and bovine serum albumin-modified glassy carbon electrode able to detect the SARS-CoV-2 spike antibody. Moreover, during the detection of the SARS-CoV-2 spike antibody in spiked-real samples, the anodic signal of the produced biosensor at 0.85 V decreased as the amount of the SARS-CoV-2 spike antibody increased. Meanwhile, the recovery and relative standard deviation values for saliva and oropharyngeal swab samples were 97.73% and 3.35% and 102.43% and 4.63%, respectively. In 35 min, the biosensing platform could detect 0.03 fg/mL of the SARS-CoV-2 spike antibody in synthetic media and spiked-saliva or -oropharyngeal swab samples. The method thus issues a linear response to the SARS-CoV-2 spike antibody from 0.1 fg/mL to 10 pg/mL. The cross-reactivity studies with spike antigens of Middle East respiratory syndrome-coronavirus and influenza A and the antigen of pneumonia confirmed the excellent selectivity of the proposed method. The developed method was compared with the lateral flow immunoassay method in terms of sensitivity and it was found to be approximately 109 times more sensitive. Biosensing mechanism of the platform to the SARS-CoV-2 spike antibody.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/instrumentation , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Viral/immunology , Biosensing Techniques/instrumentation , COVID-19/immunology , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Hydrogen Bonding , Models, Molecular , SARS-CoV-2/immunology , Saliva/virology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
9.
Adv Mater ; 34(3): e2104608, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1499211

ABSTRACT

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here, an alternative biosensor transistor concept is developed, which relies on a solution-processed In2 O3 /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In2 O3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (am) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically engineered channel with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody receptors, real-time detection of the SARS-CoV-2 spike S1 protein down to am concentrations is demonstrated in under 2 min in physiological relevant conditions.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19/virology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Transistors, Electronic , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Immobilized , Antibodies, Viral , Bioengineering , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing/instrumentation , COVID-19 Testing/methods , Computer Simulation , Computer Systems , DNA/analysis , Equipment Design , Humans , Indium , Microtechnology , Proof of Concept Study , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Zinc Oxide
10.
ACS Appl Mater Interfaces ; 13(42): 49754-49761, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1475248

ABSTRACT

A reliable and sensitive detection approach for SARS-CoV 2 is essential for timely infection diagnosis and transmission prevention. Here, a two-dimensional (2D) metal-organic framework (MOF)-based photoelectrochemical (PEC) aptasensor with high sensitivity and stability for SARS-CoV 2 spike glycoprotein (S protein) detection was developed. The PEC aptasensor was constructed by a plasmon-enhanced photoactive material (namely, Au NPs/Yb-TCPP) with a specific DNA aptamer against S protein. The Au NPs/Yb-TCPP fabricated by in situ growth of Au NPs on the surface of 2D Yb-TCPP nanosheets showed a high electron-hole (e-h) separation efficiency due to the enhancement effect of plasmon, resulting in excellent photoelectric performance. The modified DNA aptamer on the surface of Au NPs/Yb-TCPP can bind with S protein with high selectivity, thus decreasing the photocurrent of the system due to the high steric hindrance and low conductivity of the S protein. The established PEC aptasensor demonstrated a highly sensitive detection for S protein with a linear response range of 0.5-8 µg/mL with a detection limit of 72 ng/mL. This work presented a promising way for the detection of SARS-CoV 2, which may conduce to the impetus of clinic diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Base Sequence , Biosensing Techniques/instrumentation , COVID-19/diagnosis , DNA/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Gold/radiation effects , Humans , Immobilized Nucleic Acids/chemistry , Light , Limit of Detection , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Pharynx/virology , Photochemical Processes , Porphyrins/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Ytterbium/chemistry
11.
Nat Commun ; 12(1): 5811, 2021 10 04.
Article in English | MEDLINE | ID: covidwho-1450281

ABSTRACT

Chemical reactions of single molecules, caused by rapid formation or breaking of chemical bonds, are difficult to observe even with state-of-the-art instruments. A biological nanopore can be engineered into a single molecule reactor, capable of detecting the binding of a monatomic ion or the transient appearance of chemical intermediates. Pore engineering of this type is however technically challenging, which has significantly restricted further development of this technique. We propose a versatile strategy, "programmable nano-reactors for stochastic sensing" (PNRSS), by which a variety of single molecule reactions of hydrogen peroxide, metal ions, ethylene glycol, glycerol, lactic acid, vitamins, catecholamines or nucleoside analogues can be observed directly. PNRSS presents a refined sensing resolution which can be further enhanced by an artificial intelligence algorithm. Remdesivir, a nucleoside analogue and an investigational anti-viral drug used to treat COVID-19, can be distinguished from its active triphosphate form by PNRSS, suggesting applications in pharmacokinetics or drug screening.


Subject(s)
Biosensing Techniques/instrumentation , Nanopores , Artificial Intelligence , Stochastic Processes
12.
Nat Commun ; 12(1): 724, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1387326

ABSTRACT

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Subject(s)
Biosensing Techniques/methods , Gene Regulatory Networks/genetics , Glucose/analysis , Nucleic Acids/analysis , Point-of-Care Systems , Point-of-Care Testing , Biosensing Techniques/instrumentation , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Glucose/metabolism , Humans , Nucleic Acids/genetics , Pandemics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Typhoid Fever/blood , Typhoid Fever/diagnosis , Typhoid Fever/microbiology
13.
Nat Commun ; 12(1): 4876, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1356557

ABSTRACT

While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.


Subject(s)
Biosensing Techniques/instrumentation , Precision Medicine/instrumentation , Textiles , Wearable Electronic Devices , Wireless Technology/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Equipment Design , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Precision Medicine/methods , SARS-CoV-2/physiology , Sweat/physiology
14.
Biosensors (Basel) ; 11(7)2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1323110

ABSTRACT

Optofluidic flow-through biosensors are being developed for single particle detection, particularly as a tool for pathogen diagnosis. The sensitivity of the biosensor chip depends on design parameters, illumination format (side vs. top), and flow configuration (parabolic, two- and three-dimensional hydrodynamic focused (2DHF and 3DHF)). We study the signal differences between various combinations of these design aspects. Our model is validated against a sample of physical devices. We find that side-illumination with 3DHF produces the strongest and consistent signal, but parabolic flow devices process a sample volume more quickly. Practical matters of optical alignment are also discussed, which may affect design choice.


Subject(s)
Biosensing Techniques/instrumentation , Lab-On-A-Chip Devices , Hydrodynamics , Microfluidic Analytical Techniques
15.
Molecules ; 25(20)2020 Oct 13.
Article in English | MEDLINE | ID: covidwho-1305732

ABSTRACT

Nano-islands are entities (droplets or other shapes) that are formed by spontaneous dewetting (agglomeration, in the early literature) of thin and very thin metallic (especially gold) films on a substrate, done by post-deposition heating or by using other sources of energy. In addition to thermally generated nano-islands, more recently, nanoparticle films have also been dewetted, in order to form nano-islands. The localized surface plasmon resonance (LSPR) band of gold nano-islands was found to be sensitive to changes in the surrounding environment, making it a suitable platform for sensing and biosensing applications. In this review, we revisit the development of the concept of nano-island(s), the thermodynamics of dewetting of thin metal films, and the effect of the substrate on the morphology and optical properties of nano-islands. A special emphasis is made on nanoparticle films and their applications to biosensing, with ample examples from the authors' work.


Subject(s)
Gold/chemistry , Nanocomposites/chemistry , Point-of-Care Systems , Surface Plasmon Resonance/instrumentation , Animals , Biosensing Techniques/instrumentation , Growth Hormone/analysis , Humans , Lab-On-A-Chip Devices , Milk/chemistry , Nanotechnology/methods , Surface Plasmon Resonance/methods
16.
Nat Biotechnol ; 39(11): 1366-1374, 2021 11.
Article in English | MEDLINE | ID: covidwho-1286462

ABSTRACT

Integrating synthetic biology into wearables could expand opportunities for noninvasive monitoring of physiological status, disease states and exposure to pathogens or toxins. However, the operation of synthetic circuits generally requires the presence of living, engineered bacteria, which has limited their application in wearables. Here we report lightweight, flexible substrates and textiles functionalized with freeze-dried, cell-free synthetic circuits, including CRISPR-based tools, that detect metabolites, chemicals and pathogen nucleic acid signatures. The wearable devices are activated upon rehydration from aqueous exposure events and report the presence of specific molecular targets by colorimetric changes or via an optical fiber network that detects fluorescent and luminescent outputs. The detection limits for nucleic acids rival current laboratory methods such as quantitative PCR. We demonstrate the development of a face mask with a lyophilized CRISPR sensor for wearable, noninvasive detection of SARS-CoV-2 at room temperature within 90 min, requiring no user intervention other than the press of a button.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 , SARS-CoV-2/isolation & purification , Synthetic Biology , Wearable Electronic Devices , COVID-19/diagnosis , Humans , Textiles
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200228, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1284967

ABSTRACT

The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19/diagnosis , Synthetic Biology/methods , Wearable Electronic Devices , Zika Virus Infection/veterinary , Zoonoses/diagnosis , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Animals, Wild/virology , Biomarkers/analysis , Cell Engineering/methods , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Point-of-Care Testing , Zika Virus Infection/diagnosis
18.
Mikrochim Acta ; 188(6): 199, 2021 05 26.
Article in English | MEDLINE | ID: covidwho-1245646

ABSTRACT

Since the COVID-19 disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) was declared a pandemic, it has spread rapidly, causing one of the most serious outbreaks in the last century. Reliable and rapid diagnostic tests for COVID-19 are crucial to control and manage the outbreak. Here, a label-free square wave voltammetry-based biosensing platform for the detection of SARS-CoV-2 in nasopharyngeal samples is reported. The sensor was constructed on screen-printed carbon electrodes coated with gold nanoparticles. The electrodes were functionalized using 11-mercaptoundecanoic acid (MUA) which was used for the immobilization of an antibody against SARS-CoV-2 nucleocapsid protein (N protein). The binding of the immunosensor with the N protein caused a change in the electrochemical signal. The detection was realised by measuring the change in reduction peak current of a redox couple using square wave voltammetry at 0.04 V versus Ag ref. electrode on the immunosensor upon binding with the N protein. The electrochemical immunosensor showed high sensitivity with a linear range from 1.0 pg.mL-1 to 100 ng.mL-1 and a limit of detection of 0.4 pg.mL-1 for the N protein in PBS buffer pH 7.4. Moreover, the immunosensor did not exhibit significant response with other viruses such as HCoV, MERS-CoV, Flu A and Flu B, indicating the high selectivity of the sensor for SARS-CoV-2. However, cross reactivity of the biosensor with SARS-CoV is indicated, which gives ability of the sensor to detect both SARS-CoV and SARS-CoV-2. The biosensor was successfully applied to detect the SARS-CoV-2 virus in clinical samples showing good correlation between the biosensor response and the RT-PCR cycle threshold values. We believe that the capability of miniaturization, low-cost and fast response of the proposed label-free electrochemical immunosensor will facilitate the point-of-care diagnosis of COVID 19 and help prevent further spread of infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Electrochemical Techniques/methods , Immunoassay/methods , SARS-CoV-2/chemistry , Antibodies, Immobilized/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 Testing/instrumentation , Carbon/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrodes , Fatty Acids/chemistry , Gold/chemistry , Humans , Immunoassay/instrumentation , Limit of Detection , Metal Nanoparticles/chemistry , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/immunology , Sulfhydryl Compounds/chemistry
19.
Biosensors (Basel) ; 11(6)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1243953

ABSTRACT

Despite collaborative efforts from all countries, coronavirus disease 2019 (COVID-19) pandemic has been continuing to spread globally, forcing the world into social distancing period, making a special challenge for public healthcare system. Before vaccine widely available, the best approach to manage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to achieve highest diagnostic accuracy by improving biosensor efficacy. For SARS-CoV-2 diagnostics, intensive attempts have been made by many scientists to ameliorate the drawback of current biosensors of SARS-CoV-2 in clinical diagnosis to offer benefits related to platform proposal, systematic analytical methods, system combination, and miniaturization. This review assesses ongoing research efforts aimed at developing integrated diagnostic tools to detect RNA viruses and their biomarkers for clinical diagnostics of SARS-CoV-2 infection and further highlights promising technology for SARS-CoV-2 specific diagnosis. The comparisons of SARS-CoV-2 biomarkers as well as their applicable biosensors in the field of clinical diagnosis were summarized to give scientists an advantage to develop superior diagnostic platforms. Furthermore, this review describes the prospects for this rapidly growing field of diagnostic research, raising further interest in analytical technology and strategic plan for future pandemics.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , SARS-CoV-2/isolation & purification , Animals , Biosensing Techniques/methods , COVID-19 Testing/methods , Colorimetry/instrumentation , Colorimetry/methods , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Equipment Design , Humans , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing
20.
J Mater Chem B ; 9(23): 4608-4619, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-1236100

ABSTRACT

Worldwide infections and fatalities caused by the SARS-CoV-2 virus and its variants responsible for COVID-19 have significantly impeded the economic growth of many nations. People in many nations have lost their livelihoods, it has severely impacted international relations and, most importantly, health infrastructures across the world have been tormented. This pandemic has already left footprints on human psychology, traits, and priorities and is certainly going to lead towards a new world order in the future. As always, science and technology have come to the rescue of the human race. The prevention of infection by instant and repeated cleaning of surfaces that are most likely to be touched in daily life and sanitization drives using medically prescribed sanitizers and UV irradiation of textiles are the first steps to breaking the chain of transmission. However, the real challenge is to develop and uplift medical infrastructure, such as diagnostic tools capable of prompt diagnosis and instant and economic medical treatment that is available to the masses. Two-dimensional (2D) materials, such as graphene, are atomic sheets that have been in the news for quite some time due to their unprecedented electronic mobilities, high thermal conductivity, appreciable thermal stability, excellent anchoring capabilities, optical transparency, mechanical flexibility, and a unique capability to integrate with arbitrary surfaces. These attributes of 2D materials make them lucrative for use as an active material platform for authentic and prompt (within minutes) disease diagnosis via electrical or optical diagnostic tools or via electrochemical diagnosis. We present the opportunities provided by 2D materials as a platform for SARS-CoV-2 diagnosis.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 Testing/instrumentation , COVID-19 Testing/methods , COVID-19/diagnosis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , SARS-CoV-2/isolation & purification , COVID-19/mortality , Humans , Spectrum Analysis, Raman , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL